147 research outputs found

    PuFFIN--a parameter-free method to build nucleosome maps from paired-end reads.

    Get PDF
    BackgroundWe introduce a novel method, called PuFFIN, that takes advantage of paired-end short reads to build genome-wide nucleosome maps with larger numbers of detected nucleosomes and higher accuracy than existing tools. In contrast to other approaches that require users to optimize several parameters according to their data (e.g., the maximum allowed nucleosome overlap or legal ranges for the fragment sizes) our algorithm can accurately determine a genome-wide set of non-overlapping nucleosomes without any user-defined parameter. This feature makes PuFFIN significantly easier to use and prevents users from choosing the "wrong" parameters and obtain sub-optimal nucleosome maps.ResultsPuFFIN builds genome-wide nucleosome maps using a multi-scale (or multi-resolution) approach. Our algorithm relies on a set of nucleosome "landscape" functions at different resolution levels: each function represents the likelihood of each genomic location to be occupied by a nucleosome for a particular value of the smoothing parameter. After a set of candidate nucleosomes is computed for each function, PuFFIN produces a consensus set that satisfies non-overlapping constraints and maximizes the number of nucleosomes.ConclusionsWe report comprehensive experimental results that compares PuFFIN with recently published tools (NOrMAL, TEMPLATE FILTERING, and NucPosSimulator) on several synthetic datasets as well as real data for S. cerevisiae and P. falciparum. Experimental results show that our approach produces more accurate nucleosome maps with a higher number of non-overlapping nucleosomes than other tools

    The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum.

    Get PDF
    BackgroundGene expression is controlled at multiple levels, including transcription, stability, translation, and degradation. Over the years, it has become apparent that Plasmodium falciparum exerts limited transcriptional control of gene expression, while at least part of Plasmodium's genome is controlled by post-transcriptional mechanisms. To generate insights into the mechanisms that regulate gene expression at the post-transcriptional level, we undertook complementary computational, comparative genomics, and experimental approaches to identify and characterize mRNA-binding proteins (mRBPs) in P. falciparum.ResultsClose to 1000 RNA-binding proteins are identified by hidden Markov model searches, of which mRBPs encompass a relatively large proportion of the parasite proteome as compared to other eukaryotes. Several abundant mRNA-binding domains are enriched in apicomplexan parasites, while strong depletion of mRNA-binding domains involved in RNA degradation is observed. Next, we experimentally capture 199 proteins that interact with mRNA during the blood stages, 64 of which with high confidence. These captured mRBPs show a significant overlap with the in silico identified candidate RBPs (p < 0.0001). Among the experimentally validated mRBPs are many known translational regulators active in other stages of the parasite's life cycle, such as DOZI, CITH, PfCELF2, Musashi, and PfAlba1-4. Finally, we also detect several proteins with an RNA-binding domain abundant in Apicomplexans (RAP domain) that is almost exclusively found in apicomplexan parasites.ConclusionsCollectively, our results provide the most complete comparative genomics and experimental analysis of mRBPs in P. falciparum. A better understanding of these regulatory proteins will not only give insight into the intricate parasite life cycle but may also provide targets for novel therapeutic strategies

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors

    Analysis of nucleosome positioning landscapes enables gene discovery in the human malaria parasite Plasmodium falciparum.

    Get PDF
    BackgroundPlasmodium falciparum, the deadliest malaria-causing parasite, has an extremely AT-rich (80.7 %) genome. Because of high AT-content, sequence-based annotation of genes and functional elements remains challenging. In order to better understand the regulatory network controlling gene expression in the parasite, a more complete genome annotation as well as analysis tools adapted for AT-rich genomes are needed. Recent studies on genome-wide nucleosome positioning in eukaryotes have shown that nucleosome landscapes exhibit regular characteristic patterns at the 5'- and 3'-end of protein and non-protein coding genes. In addition, nucleosome depleted regions can be found near transcription start sites. These unique nucleosome landscape patterns may be exploited for the identification of novel genes. In this paper, we propose a computational approach to discover novel putative genes based exclusively on nucleosome positioning data in the AT-rich genome of P. falciparum.ResultsUsing binary classifiers trained on nucleosome landscapes at the gene boundaries from two independent nucleosome positioning data sets, we were able to detect a total of 231 regions containing putative genes in the genome of Plasmodium falciparum, of which 67 highly confident genes were found in both data sets. Eighty-eight of these 231 newly predicted genes exhibited transcription signal in RNA-Seq data, indicative of active transcription. In addition, 20 out of 21 selected gene candidates were further validated by RT-PCR, and 28 out of the 231 genes showed significant matches using BLASTN against an expressed sequence tag (EST) database. Furthermore, 108 (47%) out of the 231 putative novel genes overlapped with previously identified but unannotated long non-coding RNAs. Collectively, these results provide experimental validation for 163 predicted genes (70.6%). Finally, 73 out of 231 genes were found to be potentially translated based on their signal in polysome-associated RNA-Seq representing transcripts that are actively being translated.ConclusionOur results clearly indicate that nucleosome positioning data contains sufficient information for novel gene discovery. As distinct nucleosome landscapes around genes are found in many other eukaryotic organisms, this methodology could be used to characterize the transcriptome of any organism, especially when coupled with other DNA-based gene finding and experimental methods (e.g., RNA-Seq)

    DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum.

    Get PDF
    BackgroundIn eukaryotic organisms, packaging of DNA into nucleosomes controls gene expression by regulating access of the promoter to transcription factors. The human malaria parasite Plasmodium falciparum encodes relatively few transcription factors, while extensive nucleosome remodeling occurs during its replicative cycle in red blood cells. These observations point towards an important role of the nucleosome landscape in regulating gene expression. However, the relation between nucleosome positioning and transcriptional activity has thus far not been explored in detail in the parasite.ResultsHere, we analyzed nucleosome positioning in the asexual and sexual stages of the parasite's erythrocytic cycle using chromatin immunoprecipitation of MNase-digested chromatin, followed by next-generation sequencing. We observed a relatively open chromatin structure at the trophozoite and gametocyte stages, consistent with high levels of transcriptional activity in these stages. Nucleosome occupancy of genes and promoter regions were subsequently compared to steady-state mRNA expression levels. Transcript abundance showed a strong inverse correlation with nucleosome occupancy levels in promoter regions. In addition, AT-repeat sequences were strongly unfavorable for nucleosome binding in P. falciparum, and were overrepresented in promoters of highly expressed genes.ConclusionsThe connection between chromatin structure and gene expression in P. falciparum shares similarities with other eukaryotes. However, the remarkable nucleosome dynamics during the erythrocytic stages and the absence of a large variety of transcription factors may indicate that nucleosome binding and remodeling are critical regulators of transcript levels. Moreover, the strong dependency between chromatin structure and DNA sequence suggests that the P. falciparum genome may have been shaped by nucleosome binding preferences. Nucleosome remodeling mechanisms in this deadly parasite could thus provide potent novel anti-malarial targets

    Exploratory analysis of genomic segmentations with Segtools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including <it>cis</it>-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations.</p> <p>Results</p> <p>We present a software toolkit called <it>Segtools </it>that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and <it>Plasmodium falciparum </it>local chromatin structure data sets.</p> <p>Conclusions</p> <p>Segtools provides a convenient, powerful means of interpreting a genomic segmentation.</p

    High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, <it>Plasmodium falciparum</it>, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS) to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes.</p> <p>Results</p> <p>After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells.</p> <p>Conclusion</p> <p>This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new <it>P. falciparum </it>RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.</p
    corecore